owner.fullName | owner.names.0.first | owner.names.0.full | owner.names.0.last | owner.names.0.middle | owner.names.1.first | owner.names.1.full | owner.names.1.last | owner.names.1.middle | address.street | address.city | address.state | address.zip | address.zipPlus4 | address.county | owner.mailingAddress.street | owner.mailingAddress.city | owner.mailingAddress.state | owner.mailingAddress.zip | owner.mailingAddress.zipPlus4 | owner.mailingAddress.county | _id | valuation.ltv | valuation.estimatedValue | valuation.equityCurrentEstimatedBalance | valuation.confidenceScore | valuation.equityPercent | valuation.priceRangeMax | valuation.priceRangeMin | valuation.standardDeviation | valuation.asOfDate | ids.apn | address.longitude | address.latitude | address.houseNumber | address.hash | address.countyFipsCode | ids.addressHash | ids.fipsCode | ids.oldApn | ids.parcelHash | ids.taxId |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxxxxxxxxxxxxxx | xxxxxx | x | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxx | xxxxxxxx | xx | xxxxx | xxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxx | xxxxxxx | xx | xxxx | xxxxxxx | xxxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxx | xxxxxxxx | xx | xxxxx | xxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | xxxxxx | xxxxxx | xx | xxxx | xxxxxx | xxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx | |
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | xxxxxxx | xxxxxx | xx | xxxx | xxxxxxx | xxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx | ||||
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | xxxxxxx | xxxxxxx | xx | xxxx | xxxxxxx | xxxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx | ||||
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | x | xxxxxxx | xxxxxxx | xx | xxx | xxxxxx | xxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx | ||||
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxx | xxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | x | xxxxxx | xxxxxx | xx | xxx | xxxxxxx | xxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx | ||||
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxx | xxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | x | xxxxxxx | xxxxxxx | xx | xxx | xxxxxx | xxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx | |
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxx | x | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | xxxxxxx | xxxxxxx | xx | xxxx | xxxxxxx | xxxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx |
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxx | xxxxxxx | xxxxxxx | xx | xxxx | xxxxxxx | xxxxxxx | x | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxx | xxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxx | ||||
xxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxx | xxxxxx | xxxxxxxxxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxx | xxxxxxx | xx | xxxxx | xxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | xxxxxxx | xxxxxxx | xx | xxxx | xxxxxxx | xxxxxxx | xx | xxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxxxx | xxxxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx |
Description
The Property Valuation Data Listing offered by BatchService delivers an extensive and detailed dataset designed to provide unparalleled insight into real estate market trends, property values, and investment opportunities. This dataset includes over 9 critical data points that offer a comprehensive view of property valuations across various geographic regions and market conditions. Below is an in-depth description of the data points and their implications for users in the real estate industry. The Property Valuation Data Listing by BatchService is categorized into four primary sections, each offering detailed insights into different aspects of property valuation. Here’s an in-depth look at each category: 1. Current Valuation AVM Value as of Specific Date: The Automated Valuation Model (AVM) estimate of the property’s current market value, calculated as of a specified date. This value reflects the most recent assessment based on available data. Use Case: Provides an up-to-date valuation, essential for making current investment decisions, setting sale prices, or conducting market analysis. Valuation Confidence Score: A measure indicating the confidence level of the AVM value. This score reflects the reliability of the valuation based on data quality, volume, and model accuracy. Use Case: Helps users gauge the reliability of the valuation estimate. Higher confidence scores suggest more reliable values, while lower scores may indicate uncertainty or data limitations. 2. Valuation Range Price Range Minimum: The lowest estimated market value for the property within the given range. This figure represents the lower bound of the valuation spectrum. Use Case: Useful for understanding the potential minimum value of the property, helping in scenarios like setting a reserve price in auctions or evaluating downside risk. Price Range Maximum: The highest estimated market value for the property within the given range. This figure represents the upper bound of the valuation spectrum. Use Case: Provides insight into the potential maximum value, aiding in price setting, investment analysis, and comparative market assessments. AVM Value Standard Deviation: A statistical measure of the variability or dispersion of the AVM value estimates. It indicates how much the estimated values deviate from the average AVM value. Use Case: Assists in understanding the variability of the valuation and assessing the stability of the estimated value. A higher standard deviation suggests more variability and potential uncertainty. 3. LTV (Loan to Value Ratio) Current Loan to Value Ratio: The ratio of the outstanding loan balance to the current market value of the property, expressed as a percentage. This ratio helps assess the risk associated with the loan relative to the property’s value. Use Case: Crucial for lenders and investors to evaluate the financial risk of a property. A higher LTV ratio indicates higher risk, as the property value is lower compared to the loan amount. 4. Valuation Equity Calculated Total Equity: based upon estimate amortized balances for all open liens and AVM value Use Case: Provides insight into the net worth of the property for the owner. Useful for evaluating the financial health of the property, planning for refinancing, or understanding the owner’s potential gain or loss in case of sale. This structured breakdown of data points offers a comprehensive view of property valuations, allowing users to make well-informed decisions based on current market conditions, valuation accuracy, financial risk, and equity potential. This information can be particularly useful for: - Automated Valuation Models (AVMs) - Fuel Risk Management Solutions - Property Valuation Tools - ARV, rental data, building condition and more - Listing/offer Price Determination
Country Coverage
(1 country)Data Categories
- Property Market Data
- Property Transaction Data
- Property Data
- Real Estate Valuation Data
- Rental Data
Pricing
One-off purchase | $500 |
Monthly License |
Not available |
Yearly License | $10.2K |
Usage-based | $0.01 |
Volumes
- Property Profiles
- 155M
- Homeowner Profiles
- 87M
- Residential Properties
- 110M
- Commercial Buildings
- 4.2M
Does this product fit your data needs?
Get in touch with our team to start unlocking your data solutions.
Request Information